Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
São Paulo; s.n; 2018. 103 p.
Thesis in Portuguese | LILACS | ID: biblio-988219

ABSTRACT

Introdução: Doenças cardiovasculares constituem importante causa de morte em todo mundo e a hipercolesterolemia está diretamente relacionada como fator agravante desta morbidade. A dieta desempenha papel importante neste processo e alguns alimentos como o amaranto, especialmente sua proteína, tem mostrado capacidade de redução do colesterol plasmático. Estudos sugerem que este efeito está relacionado a peptídeos formados durante a digestão da sua proteína, os quais desempenham um papel importante na regulação e modulação do metabolismo lipídico. Os efeitos hipocolesterolêmicos, já observados, indicam o uso da proteína do amaranto como um composto bioativo direcionado para a promoção da saúde. Considerando que os efeitos hipocolesterolêmicos destes peptídeos são complexos e há diversas hipóteses formuladas, torna-se importante a realização de estudos visando avaliar a interação dos peptídeos na absorção intestinal do colesterol e da sua modulação genética. Objetivos: Verificar os efeitos do hidrolisado da farinha do grão de amaranto na absorção de colesterol e modulação de genes ABCA1, ABCG1, NPC1L1, AMPK, HMGR e SREBP-2em células Caco-2, e modulação dos genes ABCG8, HMGR, SREBP-2 e AMPKem enterócitos de hamsters. Metodologia: O amaranto foi triturado, sua farinha desengordurada e sua proteína isolada, com posterior digestão in vitro e filtração dos peptídeos. Três experimentos in vitro foram conduzidos com as células: permeação de hidrolisado, permeação de colesterol e de efeito sob a expressão gênica. No primeiro, o hidrolisado proteico de amaranto foi permeado em culturas celulares de Caco-2 no tempo de 2 horas. O permeato foi coletado e analisado por LC/MS/MS. No segundo, o hidrolisado de amaranto foi incorporado a micelas de colesterol e incubados em culturas celulares, nas concentrações de 1,0 mg/ml, e 3,0 mg/ml em tempos de 2h. Também em concentrações de 3,0 mg/ml foi adicionado albumina e caseína para efeito comparativo. O conteúdo de colesterol na porção apical e basolateral foi analisado em HPLC. O terceiro experimento foi avaliaçãoda exposição do hidrolisado, em concentrações de 0,5 mg/ml, 1,0 mg/ml e 3,0 mg/ml, em tempos de 2h e 12h. Após este período, foi realizada a extração de RNA total, avaliação de rendimento e integridade do material; medida quantitativa de expressão de RNAm por RT-PCR e quantificação relativa da expressão por ?CT dos genes ABCA1, ABCG1, ABCG8, NPC1L1, AMP1, HMGR e SREBP-2das células Caco-2 e tecido intestinal de hamsters, coletados em ensaios anteriores. Resultados: Na permeação de colesterol não houve diferença entre as concentrações dos hidrolisados proteicos e controle, porém o hidrolisado de amaranto em 1,0 mg/ml demonstrou uma tendência em diminuir a absorção de colesterol (p = 0,05). Na exposição das células Caco-2 aos peptídeos por 2h, houve uma diminuição nas concentrações de RNAm dos genes ABCA1, NPC1L1, AMPK, HMGR e SREBP-2 nas concentrações de 3,0 mg/ml. O tempo de exposição de 12h apresentou resultados semelhantes ao tempo de 2h. Somente a expressão gênica de ABCG8foi influenciada pelo isolado proteico de amaranto no experimento in vivo. Conclusão: A partir do exposto, podemos concluir que os peptídeos do grão de amaranto influenciam o metabolismo de colesterol por mecanismos genéticos. Portanto, torna-se uma alternativa a ser introduzida na dieta de indivíduos saudáveis e em pacientes com hipercolesterolemia, visando a prevenção de agravos e como estratégia de terapia adicional no controle dos níveis de LDL-c plasmático. Contudo, mais experimentos in vivo e em humanos são necessários para estabelecer a dose efetiva para consumo


Introduction: Cardiovascular diseases are an important cause of death worldwide and hypercholesterolemia is directly related as an aggravating factor of this morbidity. Diet plays an important role in this process and some foods such as amaranth, especially its protein, have shown ability to lower plasma cholesterol. Studies suggest that this effect is related to peptides formed during the digestion of their protein, which play an important role in the regulation and modulation of lipid metabolism. The hypocholesterolemic effects, already observed, indicate the use of amaranth protein as a bioactive compound aimed to promoting health. Considering that the hypocholesterolemic effects of these peptides are complex and there are several hypotheses formulated, it is important to carry out studies to evaluate the interaction of peptides in the intestinal absorption of cholesterol and its genetic modulation. Objectives: To verify the effects of amaranth grain flour hydrolyzate on cholesterol uptake and ABCA1, ABCG1, NPC1L1, AMPK, HMGR and SREBP-2 genes modulation in Caco-2 intestinal cells, and modulation of ABCG8, HMGR, SREBP-2 genes and AMPK in hamster intestinal cells. Methodology: Amaranth was crushed, the created flour was defatted and its protein isolated, with subsequent in vitro digestion and filtration of the peptides. Three in vitro experiments were conducted with the cells: hydrolyzate permeation, cholesterol permeation and genetic expression. In the first, the amaranth protein hydrolyzate was permeated in Caco-2 cell cultures in the time of 2 hours. The permeate was collected and analyzed by LC/MS/MS. In the second, the amaranth hydrolyzate was incorporated into cholesterol micelles and incubated in cell cultures at concentrations of 1.0 mg/ml and 3.0 mg/ml in times of 2 h. Also, at concentrations of 3.0 mg/ml albumin and casein were added for comparison. Cholesterol content in the apical and basolateral portion was analyzed by HPLC. The third experiment was to evaluate the exposure of the hydrolyzate at concentrations of 0.5 mg/ml, 1.0 mg/ml and 3.0 mg/ml, in times of 2 h and 12 h. After this period, the extraction of total RNA, evaluation of yield and integrity of the material was performed; quantitative measurement of mRNA expression by RT-PCR and relative quantification of ?CT expression of the ABCA1, ABCG1, ABCG8, NPC111, AMPK, HMGR and SREBP-2 genes from Caco-2 cells and hamster intestinal tissue, collected in previous assays, were finalized. Results: In cholesterol permeation there was no difference between the concentrations of the protein hydrolysates and control, but the amaranth hydrolyzate at 1.0 mg/ml showed a tendency to decrease the cholesterol absorption (p = 0.05). Exposure of Caco-2 cells to peptides for 2 h resulted in a decrease in ABCA1, NPC111, AMPK, HMGR and SREBP-2 mRNA levels at concentrations of 3.0 mg/ml. The exposure time of 12h presented results similar to the time of 2h. Only the gene expression of ABCG8 was influenced by the amaranth protein isolate in the in vivo experiment. Conclusion: From the above, we can conclude that amaranth peptides influence the metabolism of cholesterol by genetic mechanisms. Therefore, it becomes an alternative to be introduced in the diet of healthy individuals and in patients with hypercholesterolemia, aiming at the prevention of aggravations and as a strategy of additional therapy in the control of plasma LDL-c levels. However, more studies should bedone with animals and humans to define the dose-efficiency for diet.


Subject(s)
Peptides , Gene Expression , Cholesterol , Protein Transport , Amaranthus/metabolism , Hypercholesterolemia , In Vitro Techniques
2.
São Paulo; s.n; 2013. 73 p.
Thesis in Portuguese | LILACS | ID: biblio-878768

ABSTRACT

Introdução: A obesidade e a dislipidemia são grandes contribuintes dos agravos cardiovasculares. O consumo de vegetais, principalmente de suas proteínas, atua de forma protetora na magnitude destes agravos. Há grandes indícios de que a proteína do amaranto possui efeito hipocolesterolemizante pela ação de peptídeos, originários de sua digestão incompleta. Objetivo: Verificar a ação, in vitro, do hidrolisado proteico do amaranto, submetido a diferentes processamentos, na solubilização micelar do colesterol e inibição da atividade enzimática HMGR. Métodos: As farinhas processadas e crua foram analisadas quanto seu teor de aminoácidos. Os isolados proteicos das farinhas do grão de amaranto tostado, extrusado e cru, foram submetidos à hidrólise enzimática e em seguida, foi elaborada uma solução de sais biliares e colesterol para avaliar a capacidade dos hidrolisados proteicos em diminuir a solubilização micelar de colesterol. Utilizaram-se os ultra filtrados (PM menor que 3 kDa) em concentração de 3 mg/mL em equivalentes de albumina, e para os de peso moleculares maiores foram utilizados 10 mg/mL. Com o intuito de verificar o mecanismo de inibição da síntese endógena de colesterol, somente, foram utilizados os hidrolisados ultra filtrados. Nos ensaios de inibição enzimática da HMGR foram utilizadas concentrações de hidrolisados (0,1, 0,5 e 1 mg/mL) para avaliar a inibição e comparar a pravastatina (inibidor conhecido). Resultados: A composição de aminoácidos demonstrou-se adequada, quando comparada a recomendação de aminoácidos essenciais para crianças de 2 a 5 anos. Os aminoácidos hidrofóbicos constituem 30 por cento do total de aminoácidos. Ao avaliar o efeito do hidrolisado na solubilização micelar do colesterol, foi observado que houve diferença (p < 0,004) devido ao processamento. O hidrolisado proteico da farinha crua (IPHc), com peptídeos de peso molecular maior que 3 kDa, reduziu a solubilização micelar do colesterol em 44,09 ± 1,5 por cento , enquanto que os hidrolisados de farinha tostada (IPHt) e extrusada (IPHe) reduziram em 31,24 ± 5,9 por cento e 24,97 ± 4,1 por cento . Já os hidrolisados com peso molecular menor que 3 kDa apresentaram pouca diferença (p < 0,03) em relação ao processamento. A redução da solubilidade micelar observada pelos IPHc e IPHe foi semelhante: 37,21 ± 1,65 por cento e 35,45 ± 0,4 por cento , respectivamente. O IPHt apresentou a menor redução de 22,47 ± 4,6 por cento . Os hidrolisados da farinha de amaranto também foram capazes de inibir a atividade da enzima HMGR em diversas concentrações. O controle da atividade normal da enzima apresentou 0,65 ± 0,05 µmol de NAPH oxidada min/mg equivalente de albumina. O IPHc, em concentrações de 0,1 e 0,5 mg/mL, apresentou efeito similar ao da pravastatina, diferindo do controle (p < 0,05), produzindo: 0,24 ± 0,03 e 0,29 ± 0,13 de µmol de NAPH oxidada min/mg equivalente de albumina. Por outro lado o IPHt apresentou efeito similar ao da pravastatina em concentração superior ao cru; em 1 mg/mL produziu 0,20 ± 0,09 de µmol de NAPH oxidada min/mg equivalente de albumina. O IPHe apresentou efeito inibidor da enzima em concentração de 0,1 mg/mL, porém menor do que o observado para a pravastatina. Conclusões: A proteína do grão de amaranto hidrolisada possui indícios de atividade hipocolesterolêmica. Sendo capaz de atuar tanto na via exógena quanto na via endógena, inibindo a absorção do colesterol e sua síntese de forma indireta. O processamento térmico diminuiu esta capacidade, mas ainda demonstra resultados significativos. Dentre os processamentos, a extrusão mostrou ter diminuído este efeito, embora os seus resultados possam ter sido influenciados pela quantidade de componentes no isolado proteico, como lipídeos e compostos fenólicos


Introduction: Obesity and dyslipidemia are major contributors of cardiovascular diseases. The consumption of vegetables, especially their protein, acts protectively on the magnitude of these injuries. There is evidence that amaranth protein has a cholesterol-lowering effect by the action of peptides originating from its incomplete digestion. Objective: To assess the effect, in vitro, of the hydrolyzed protein of amaranth, submitted to different processes, on the reduction of the micellar solubilization of cholesterol and on the inhibition of HMGR enzyme activity. Methods: The raw and processed flours were analyzed for their content of amino acids. The isolated protein from amaranth grain flour toasted, extruded and raw, were subjected to enzymatic hydrolysis. Subsequently, it was prepared a solution of bile salts and cholesterol to assess the ability of the hydrolyzed protein to decrease the micellar solubilization of cholesterol. It was used the ultra-filtered peptides (MW up to 3 kDa) at concentration of 3 mg/mL equivalent albumin; and for higher molecular weights, it was used 10 mg/mL. In order to verify the mechanism of inhibition of the cholesterol endogenous synthesis, only it was used the hydrolyzed ultra-filtered peptides with MW < 3 KDa. In the assays of HMGR inhibition, several concentrations of peptides were used (0.1, 0.5 and 1 mg/mL) to compare the inhibition to pravastatin (a known inhibitor). Results: The amino acid composition showed to be adequate when compared to the recommendation of essential amino acids for children 2-5 years. Hydrophobic amino acids compose 30 per cent in total amino acids. When evaluating the effect of the hydrolyzate micellar solubilization of cholesterol has been observed that significant difference (p


Subject(s)
Amaranthus/metabolism , Cholesterol , Food Technology , Hydroxymethylglutaryl CoA Reductases , Protein Hydrolysates , In Vitro Techniques , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL